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1. Introduction
Cryptology has been defined as the science of making communications

unintelligible to all except authorized parties. The study consists of

• cryptography (Gr., kryptos–hidden, graphein–to write), which deals with the
design of the secrecy systems, and

• cryptanalysis, which deals with the breaking of the secrecy systems.

Cryptology can be traced back to the Egyptians and continues to be used
today to a larger extent than most of us realize. We most commonly think of
its use in the work of secret agents or for military purposes. However, now
that computers are prevalent, it is important to businesses to be able to pro-
tect the information stored in their computers, and to be able to communicate
information within and between companies without revealing the contents to
competitors. The widespread use of electronic funds transfers has made pri-
vacy a pressing concern in most financial transactions.

In this Module, we will discuss a few of the methods used in earlier times to
illustrate the nature of cryptology, then discuss briefly some of the more current
developments in the field.

2. Substitution Ciphers
Before proceeding, we need some terminology for the subject. The plaintext

is the message that is to be put into secret form. The cipher is the method for
changing the plaintext, and the ciphertext is the secret version of the plaintext.
To encipher is to change from plaintext to ciphertext. The reverse process of
changing from ciphertext to plaintext when one knows the cipher is called
deciphering. A piece of information called a key is used to encipher the plaintext
and also to decipher the ciphertext.

One of the easiest and most familiar ciphers is the substitution cipher. Here
each letter of the alphabet is represented by some other letter. The correspon-
dence may be random or systematic. In fact, 26! substitution ciphers are possi-
ble.

The Caesar cipher, used by Julius Caesar around 50 B.C., is an example of a
systematic substitution cipher. Each letter of the alphabet is associated with the
third letter following it; for example, A is associated with D, B with E, . . . , W with
Z, X with A, Y with B, and Z with C. If the letters of the alphabet are numbered
from 1 to 26, the Caesar cipher may be represented in the following way. If
we let p stand for the number assigned to a plaintext letter and c the number
assigned to the corresponding ciphertext letter, we have the following relation:

c ≡ p+ 3 (mod 26).
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If c ≡ 0 ≡ 26 (mod 26), we will assign to c the letter Z. To decipher a message
enciphered in the Caesar cipher, we simply use the key or solve for p in the
congruence

c ≡ p+ 3 (mod 26),

which gives the formula p ≡ (c− 3) (mod 26).
Nothing is magical about the number 3 as the shift factor in the Caesar

cipher. More generally, a cipher can be given by the formula

c ≡ p+ k (mod 26),

where 1 ≤ k ≤ 25. These ciphers are called shift transformations, and k is called
the shift factor.

As an example, suppose we use the formula

c ≡ p+ 5 (mod 26);

thus, the key is given in Table 1.

Table 1.

An example of a shift transformation.

Plaintext A B C D E F G H I J K L M

Ciphertext F G H I J K L M N O P Q R

Plaintext N O P Q R S T U V W X Y Z

Ciphertext S T U V W X Y Z A B C D E

If the plaintext message is

MEETING IN MY OFFICE AT NOON,

the ciphertext message will appear as follows (to confuse someone trying to
break the cipher, the ciphertext is usually grouped in blocks of 5):

RJJYN SLNSR DTKKN HJFYS TTS.

Consider the following secret message:

WKLVY HULIL HVWKH RUGHU BRXJD YHPHD WWKHP HHWLQ JLQPB RIILF H.

If we know that a shift transformation was used to encipher this message,
how can we decipher the message? We need only determine the value of k in
the equation

c ≡ p+ k (mod 26).

One way, which can become tedious, is to simply try every value of k from
1 to 25 in the equation p ≡ (c−k) (mod 26) until something intelligible occurs.
For example, in the secret message given above, consider the first block:
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W K L V Y

k = 1: V J K U X

k = 2: U I J T W

k = 3: T H I S V

This last value of k seems to make sense, so we try letting k = 3 and
p ≡ (c− 3) (mod 26) and decipher the message.

Another way is to utilize the frequency with which certain letters appear
in the English language. Several such counts have been published; one is
suggested by Konheim [1981], and one by Sinkov [1966]. The author of this
UMAP Module made such a count of 989 letters appearing in a newspaper
editorial and arrived at the relative frequency distribution in Table 2.

Table 2.

Table of Relative Frequencies in Plaintext.

E .123 H .069 L .039 B .020 V .007 Z .000

T .099 N .069 M .032 U .020 J .004

A .087 S .062 C .028 Y .013 K .004

O .076 R .046 W .028 F .012 Q .002

I .075 D .039 G .021 P .012 X .001

In the secret message given above, the most frequently occurring letter
is H. Since in the English language E occurs with the greatest frequency, it
seems logical to assume that in the ciphertext H corresponds to E. Since H is
the eighth letter of the alphabet and E is the fifth, we might try the relation
8 ≡ 5 + k (mod 26), that is, k = 3. Now, if c ≡ (p + 3) (mod 26), then p ≡
(c− 3) (mod 26); and if we consider the first block of the ciphertext, we find

W: p ≡ 23− 3 ≡ 20 (mod 26), so W corresponds to T;
K: p ≡ 11− 3 ≡ 8 (mod 26), so K corresponds to H;
L: p ≡ 12− 3 ≡ 9 (mod 26), so L corresponds to I;
V: p ≡ 22− 3 ≡ 19 (mod 26), so V corresponds to S.

This correspondence produces a sensible word, so we continue this deci-
phering and obtain the plaintext message:

THISV ERIFI ESTHE ORDER YOUGA VEMEA TTHEM EETIN GINMY OFFIC E.

3. Affine Transformations
At this point, we can see the need to be trickier to protect messages. A

variation of the shift transformation is the affine (or linear) transformation, which
is defined by the equation

c ≡ ap+ b (mod 26).
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The natural number amust be relatively prime to 26; otherwise, duplication of
letters occurs. Since there are 12 possible values of a (namely, 1, 3, 5, 7, 9, 11,
15, 17, 19, 21, 23, and 25), and 26 possible values of b for each of these values of
a, the total number of possible affine transformations is 12 × 26 = 312.

The formula to decipher such a transformation is found by solving the
equation c ≡ (ap+ b) (mod 26) for p. Thus,

ap ≡ c− b (mod 26),

and if we multiply both sides of the congruence by the inverse of a, that is a
value a′ such that a′a ≡ 1 (mod 26), we get

p ≡ a′(c− b) (mod 26).

Now the limitation on the value of a is more obvious, since there will exist
an a′, or inverse of a, only if a and 26 are relatively prime. For example, if
c ≡ 3p+ 5 (mod 26), then

3p ≡ c− 5 (mod 26),

and since 3(9) ≡ 1 (mod 26), we get

p ≡ 9(c− 5) (mod 26),

the deciphering formula.
In shift transformations, successive plaintext letters go to successive cipher-

text letters. For the affine transformation, a gap occurs: successive plaintext
letters go to ciphertext letters that are a units apart. For example, under the
Caesar cipher, the successive plaintext letters A and B are sent to the successive
ciphertext letters D and E. Under the affine transformation

c ≡ 3p+ 5 (mod 26),

successive letters A and B go to H and K, which are three units apart.
Suppose we are told that the following secret message was enciphered using

an affine transformation. Let us attempt to decipher the message:

VQHIB TBUYX ZDRZE VBTZG YQOBB TBYTZ GEKHU TVUYQ

VTPZO UVULT PHVKW ZXZDY QVUFV RZDKW RZDUY ZUHUB

HOKXO BTEZU TBHTY ZNQVR QNHXN BPVLQ YWBRV WBYZL Z

If we first make a frequency count of the letters appearing in the ciphertext,
we find that Z occurs 14 times, B 12 times, V 11 times, U 10 times, T 10 times, and
Y occurs 9 times. All other letters occur fewer times than these. We may use the
same procedure as before when deciphering a shift transformation, but with
some additional difficulty. For example, if we assume that the most common
letters in the ciphertext correspond to the most common letters in the English
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alphabet, we could try the correspondence of Z to E and B to T. This would lead
us to the two congruences

26 ≡ 5a+ b (mod 26)

and
2 ≡ 20a+ b (mod 26).

Subtracting, we would obtain

24 ≡ −15a (mod 26),

which is equivalent to
11a ≡ 24 (mod 26).

Since the inverse of 11 is 19,

a ≡ 19(24)14 (mod 26).

However, we saw that a must be relatively prime to 26, and a = 14 does not
satisfy this requirement.

If we were to try another assignment, letting B correspond to E and V corre-
spond to T, this would lead to the congruences

2 ≡ 5a+ b (mod 26)

and
22 ≡ 20a+ b (mod 26).

Subtracting yields 20 ≡ 15a (mod 26). Since the inverse of 15 is 7, a ≡ 7(20) ≡
10 ( mod 26). Again, 10 is not relatively prime to 26. Continuing in this manner,
we may try letting B correspond to E and Y correspond to T. This would yield
the congruences

2 ≡ 5a+ b (mod 26)

and
25 ≡ 20a+ b (mod 26).

Subtracting, 23 ≡ 15a (mod 26), and since the inverse of 15 is 7, a ≡ 7(23) ≡
5 ( mod 26). Substituting this value in the first of the congruences, b ≡ 2−5(5) ≡
3 (mod 26). These values suggest the enciphering formula

c ≡ 5p+ 3 (mod 26).

If this formula were used to encipher the message, the deciphering formula
would be found by solving this equation for p, that is,

5p ≡ c− 3 (mod 26).

But since the inverse of 5 is 21, p ≡ 21(c− 3) (mod 26).
If we try this deciphering formula on the first block of the message, we get
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V: p ≡ 21(22− 3) ≡ 9 (mod 26), so V corresponds to I;
Q: p ≡ 21(17− 3) ≡ 8 (mod 26), so Q corresponds to H;
H: p ≡ 21(8− 3) ≡ 1 (mod 26), so H corresponds to A;
I: p ≡ 21(9− 3) ≡ 22 (mod 26), so I corresponds to V;
B: p ≡ 21(2− 3) ≡ 5 (mod 26), so B corresponds to E.

This method seems to give a meaningful deciphering, so continuing, the entire
message will read

IHAVE SENTY OUCOP IESOF THREE SETSO FPLAN SINTH

ISMOR NINGS MAILD OYOUT HINKI COULD COUNT ONANE

ARLYR ESPON SEAST OWHIC HWEMI GHTDE CIDET OGO

There are other methods of deciphering a message for which an affine trans-
formation was used; these use the fact that the gap between consecutive letters
is the constant number a. When relative frequencies are used, it may also be
more convenient to use relative frequencies of combinations of letters that occur
in the English language.

4. Polygraphic Systems
In the preceding, we have indicated how a substitution cipher can be solved.

Even if the original word lengths are concealed and the substitution alphabet
is random, it is possible to find a solution by using frequency data, repetition
patterns, and information about the ways that letters combine with one another.
What makes the solution possible is the fact that a given plain-language letter
is always represented by the same cipher letter. As a consequence, all the
properties of plain language such as frequencies and combinations are carried
over into the cipher and may be used for solution.

Perhaps the way for the cryptographer to prevent the cryptanalyst’s suc-
cesses with letter frequencies might be to make the unit of encipherment a group
of letters instead of just one. A system of cryptography in which a group of
n plaintext letters is replaced as a unit by a group of n cipher letters is called
a polygraphic system. The use of such a system permits the frequencies to be
“scrambled,” that is, allowing for numerous representations of the same char-
acter within a cipher.

In the simplest case, n = 2, the system is called digraphic. Each pair of
plaintext letters is replaced by a cipher digraph. From a mathematical point
of view, a specially interesting type of polygraphic system was described by
Hill [1931]. The fundamental notion used is that of linear transformation on n
variables. To simplify the exposition, we shall choose n = 2, so our system will
be digraphic. (Larger values of n will be discussed later.)

As before, we will use a letter-to-number correspondence to permit us to
replace each letter by a number corresponding to its position in the normal
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alphabet. We will use 29 symbols, rather than the 26 letters of the alphabet, for
two reasons:

• it will be convenient to have a symbol for a space, and possibly other punc-
tuation; and

• we will later find it convenient to have a prime number of symbols.

The numerical correspondence will be as follows:

A B C D E F G H I J K L M N O

1 2 3 4 5 6 7 8 9 10 11 12 3 14 15

P Q R S T U V W X Y Z ? !

16 17 18 19 20 21 22 23 24 25 26 27 28 29

The encipherment procedure takes two successive plain text letters p1 and
p2 at a time and substitutes them (their numerical equivalents) into a pair of
congruences modulo 29 of the form

c1 ≡ ap1 + bp2 (mod 29)

c2 ≡ cp1 + dp2 (mod 29),

thus determining the cipher equivalent c1c2 of the plaintext digraph. This
process is continued, digraph by digraph, until the entire message has been
enciphered.

To illustrate the enciphering procedure, let us choose the values of a, b, c,
and d so that the congruences are

c1 ≡ 7p1 + 9p2 (mod 29)
c2 ≡ 3p1 + 12p2 (mod 29).

Suppose the message to be enciphered is:

PREPARE TO EVACUATE AT ONCE!

Then the first digraph to be enciphered is PR,

p1 = 16, p2 = 18,

and we have

c1 ≡ 7(16) + 9(18) ≡ 274 (mod 29)
c2 ≡ 3(16) + 12(18) ≡ 264 (mod 29).

These numbers cannot be directly converted to letters, so they are reduced to
their least residues modulo 29. Since 274 ≡ 13 ( mod 29) and 264 ≡ 3 ( mod 29),
we find that c1 is the letter M and c2 is the letter C.
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The second digraph to be enciphered is EP, and the encipherment can be
accomplished in the same manner; however the process can be carried out in a
more convenient manner using matrix multiplication as follows:[

7 9
3 12

]
·
[

16
18

]
=

[
274
264

]
=

[
13
3

]
−→ M

C

In the second digraph, E = 5, and P = 16, so[
7 9
3 12

]
·
[

5
16

]
=

[
179
207

]
=

[
5
4

]
−→ E

D

Continuing in this way, the ciphertext becomes:

MCEDXPQTNHBYRTG!MKQTMKE!ITFO

As mentioned earlier, larger values of n may be used, making deciphering
by unauthorized persons even more difficult. As an example ofn = 3 (trigraphic
system), let the coding matrix be given by

M =

 0 2 3
1 4 7
2 3 6

 ,
and encipher the plaintext word ADD. The numerical equivalents are 1, 4, and
4. We then premultiply the column vector 1

4
4


by the matrix M :  0 2 3

1 4 7
2 3 6

 1
4
4

 =

 20
45
38

 .
The last two numbers cannot be directly converted to letters, so they are

reduced to their least residues modulo 29. Thus, 20
45
38

 ≡
 20

16
9

 (mod 29),

and the word ADD is enciphered into TPI. Notice that the D converts to P in one
case and into I in the other, disrupting the possibility of frequency analysis.

Using the same enciphering scheme as above, let us illustrate how matrix
notation can be used to encipher the plaintext message, UNITED NATIONS. The
numerical equivalents are as follows:
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U N I T E D N A T I O N S

21 14 9 20 5 4 27 14 1 20 9 15 14 19

Notice that since n = 3, the number of characters must be a multiple of 3;
therefore, the message may need to be padded with the introduction of extra
blanks so that the number of characters is a multiple of 3. For our message, we
need to add one extra blank, coded by 27 and underlined below, as we enter
the numerical equivalents in columns into a matrix: 0 2 3

1 4 7
2 3 6

 21 20 27 20 14
14 5 14 9 19
9 4 1 15 27

 =

 55 22 31 63 119
140 68 90 161 279
138 79 102 157 247

 .
Replacing each of the numbers in the last matrix with their residues modulo 29
gives the matrix

 26 22 2 5 3
24 10 3 16 18
22 21 15 12 15

 =

 Z V B E C

X J C P R

V U O L O

 .
Thus, the ciphertext for this message is ZXVVJUBCOEPLCRO.

To illustrate the method of deciphering a ciphertext that has used this sys-
tem, let us consider just the first block of three letters, Z, X, and V. The numerical
equivalents are 26, 24, and 22. To decipher this block, we need to find numbers
x, y, and z such that

M ·
 x
y
z

 =

 26
24
22

 .
We could solve the resulting system of equations

p1 = 0x + 2y + 3z ≡ 26 (mod 29)
p2 = 1x + 4y + 7z ≡ 24 (mod 29)
p3 = 2x + 3y + 6z ≡ 22 (mod 29);

but since the message will normally be much longer than three characters, it
is more economical to first find the inverse of M , the enciphering matrix, and
premultiply by this inverse M−1. The inverse of M can be found by using the
Gauss-Jordan elimination method, and in this example we have

M−1 =

 3 −3 2
8 −6 3
−5 4 −2

 .
Using the enciphering matrix given above, namely

M =

 0 2 3
1 4 7
2 3 6

 ,
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let us decipher the following ciphertext:

WUUF!VNSOWVKLMHURLQHKWKI

Assigning numerical values to just the first 12 characters

W U U F ! V N S O W V K

23 21 21 6 29 22 14 19 15 23 22 11

and using the inverse of M found previously, we get 3 −3 2
8 −6 3
−5 4 −2

 23 6 14 23
21 29 19 22
21 22 15 11

 =

 48 −25 15 25
121 −60 43 85
−73 42 −24 −49

 .
Reducing the entries modulo 29 in the product yields 19 4 15 25

5 27 14 27
14 13 5 9

 .
Continuing in this manner, the complete message is deciphered as

SEND MONEY IMMEDIATELY!

If the reader would like to try deciphering a secret message, suppose the
secret encoding matrix is  5 4 10

2 2 5
6 1 3

 .
Decipher the ciphertext:

HW FDIYYWDFB !GUIVOGKOTTZFCJYYKJ SILQ?U

While we have used examples wheren = 2 andn = 3, there is no reason why
larger values of n cannot be used. In fact, to ensure the security of the system,
there could be periodic changes not only in the elements of the enciphering
matrix but also in the dimensions of the enciphering matrix. The elements
of the enciphering matrix and its inverse must be integers; such matrices are
not always easy to find, and the following discussion shows how they may be
constructed.

5. Integer Matrices
Theorem. If A is an n × n matrix such that det(A) = 1 and all of its elements

are integers, then too all of the elements ofA−1 are integers. [Anton 1994, 104–107]
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One way to generate such a matrix is to place all 1s down the diagonal,
all 0s in the upper triangle, and random integers in the lower triangle. Then
using the rules for matrices, transform this matrix into one that still has the
same value for the determinant (1) but has numbers other than 0 in the upper
triangle. For example, start with

A =

 1 0 0
2 1 0
3 −1 1

 .
Note that det(A) = 1.

Change this matrix, perhaps by multiplying the first column by −2 and
adding to the second column; then multiply the first column by 3 and add to
the third column:  1 −2 3

2 −3 5
3 −7 10

 .
Note that the determinant is still 1.

The inverse of this matrix is 12 −1 −3
−2 −3 6
−5 1 1

 .
For a slight variation, instead of all 1s down the diagonal, use any 2 × 2

in the lower right corner that has a determinant of 1, 1s along the rest of the
diagonal, 0s for the other elements of the upper triangle, and random integers
in the lower triangle. Example:

1 0 0 0
0 1 0 0
2 3 2 5
6 −1 1 3

 .
Note that the determinant is 1. Multiply row 3 by−2, add to row 2. Then in turn
multiply column 1 by 3, 2, and −1, adding to columns 2, 3, and 4, respectively.
The matrix has been transformed into the matrix

1 3 2 −1
−4 −17 −12 −6

2 9 6 3
6 17 13 −3

 .
Note that the determinant is still 1. The inverse of this matrix with determinant
1 is 

−57 30 53 12
0 1 2 0

24 −14 −25 −5
−10 5 9 2

 .
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6. Public-Key Cryptography
In the systems discussed so far, the sender and receiver jointly have a secret

key. The sender uses the key to encipher the plaintext to be sent, while the
receiver uses the same key in order to decipher the ciphertext obtained. These
systems are called one-key systems. Therefore, the key had to be kept secret and
yet be available to both sender and recipient. The problem with these one-key
systems is that before communication can take place, the secret key must be
distributed in a separate transaction.

In 1976, Whitfield Diffie and Martin Hellman, two electrical engineers at
Stanford University, proposed a two-key system. Although they had no work-
able method for carrying out their scheme, its properties were as follows. The
two keys are an enciphering key and a deciphering key. Although the two keys
effect inverse operations and are therefore related, there is no easily computed
method of deriving the deciphering key from the enciphering key. Thus, the
enciphering key can be made public without compromising the deciphering
key; each user can encipher messages, but only the intended recipient (whose
deciphering key is kept secret) can decipher them. A major advantage of such
a public-key cryptography system is that it is unnecessary for each sender and
receiver to exchange a key in advance of their decision to communicate with
each other.

Any two people with entries in the public-key directory could communicate
privately without any prior exchange of keys. For example, suppose Art wants
to send a message M to Beth. Art looks up Beth’s enciphering key EB in
the public directory. He enciphers M using EB to get ciphertext C, where
C = EB(M), and sends C to Beth. The function notation EB(M) means apply
Beth’s enciphering key to M . Beth then uses her secret deciphering key DB to
convert the ciphertext C back into its original plaintext form M , where M =
DB(C). Only Beth can decipher C, because she is the only person who knows
her deciphering key DB .

Using this system, messages can be authenticated and thus protect against
forgeries. For example, suppose that Beth is expecting a message from Art
and wants to be sure that the message really is from Art and not from anyone
else. Beth and Art follow this procedure to protect against forgery: Art first
“deciphers” M with his secret deciphering key DA and then enciphers the
result with Beth’s public enciphering key EB , sending Beth the ciphertext C =
EB(DA(M)).

When Beth receivesC, she first deciphers it with her private deciphering key
DB , which gives DB(C) = DA(M), because DB and EB are inverse functions.
She then “enciphers” the result using Art’s public enciphering key EA, which
recoversM because EA(DA(M)) = M . This last step ensures that the message
came from Art, because only Art would have known DA.

In 1977, Ronald L. Rivest, Adi Shamir, and Leonard Adleman at the Mas-
sachusetts Institute of Technology developed a practical way of implement-
ing Diffie and Hellman’s concept, by using elementary number theory. Their
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method is now called the RSA public-key cryptography system, after the initials of
the inventors. Its security depends on the assumption that in the current state of
computer technology, the factorization of composite numbers with large prime
factors is prohibitively time-consuming.

Before a message can be enciphered, it must be put into numerical form,M .
Convert each letter, number, or punctuation mark of the plaintext into some
numerical equivalent, such as the ASCII code, or, as in Table 3, the two-digit
numbers 00–40, with 00 indicating a space between words.

Table 3.

A numerical coding for plaintext.

A = 01 K = 11 U = 21 1 = 31

B = 02 L = 12 V = 22 2 = 32

C = 03 M = 13 W = 23 3 = 33

D = 04 N = 14 X = 24 4 = 34

E = 05 O = 15 Y = 25 5 = 35

F = 06 P = 16 Z = 26 6 = 36

G = 07 Q = 17 , = 27 7 = 37

H = 08 R = 18 . = 28 8 = 38

I = 09 S = 19 ? = 29 9 = 39

J = 10 T = 20 0 = 30 ! = 40

For each user, enciphering requires two positive integers: a numbern, which
is equal to the product of two primes, and another number e, which is computed
from the two primes by a method that will be described later. The RSA system
enciphers by raising the message M (or each block of M , if M is too long) to
the power e and finding its remainder modulo n. That is, the ciphertext C is
the remainder when Me is divided by n:

E(M) = Me ≡ C (mod n).

The messageM is restored by the same operation but using a different exponent,
integer d, also described later, which acts as a kind of inverse to e:

D(C) = Cd ≡M (mod n).

Here is a simple example using small primes. Suppose that the plaintext
message is PHONE. Let p = 13 and q = 19; then n = pq = 247. Suppose we take
e = 31 and d = 7. In numerical form, the message is M = 1608151405. It is
assumed thatM < n, butM is too large in this case; so we breakM into blocks
so that each block is less than n. Thus, M1 = 16, M2 = 08, M3 = 15, M4 = 14,
and M5 = 05. We then encipher each Mi separately, yielding

C1 = M31
1 = 1631 ≡ 081 (mod 247)

C2 = M31
2 = 831 ≡ 122 (mod 247)

C3 = M31
3 = 1531 ≡ 219 (mod 247)

C4 = M31
4 = 1431 ≡ 040 (mod 247)

C5 = M31
5 = 531 ≡ 112 (mod 247).
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The enciphered message would be C = 081 122 219 040 112. A simple
computer program can be written to find residues modulo 247 (see Appendix A
for a BASIC program to find modular residues).

To decipher the ciphertext, we use a similar method:

M1 = C7
1 = 817 ≡ 16 (mod 247)

M2 = C7
2 = 1227 ≡ 08 (mod 247)

...
M5 = C7

5 = 1127 ≡ 05 (mod 247).

In practice, the integers n, e, and d must be much larger to ensure security.
Rivest et al. described how to choose the integers so that the properties of a
public-key system suggested by Diffie and Hellman are satisfied. Computers
are necessary to implement the system. To compute n, the person designing
the system finds two large (100 digits or more) primes p and q and sets n = pq.
Several very fast primality-testing algorithms exist and can test in about 40
seconds whether an arbitrary 100-digit integer is prime.

The designer selects the enciphering exponent as a large integer e such that
gcd(e, r) = 1, where r = (p−1)(q−1). The number e should also satisfy 2e > n,
so that some reduction modulo n actually takes place, and so that the plaintext
block M cannot be recovered by just taking eth roots. Finally, the designer
computes the deciphering key d such that ed ≡ 1 (mod r). Such a value of d
will always exist, since gcd(e, r) = 1.

To illustrate the procedure, suppose that the designer selects two primes
p = 73 and q = 97 (we have chosen small primes for illustration). Then
n = (73)(97) = 7081 and r = (72)(96) = 6912. Since e must be chosen so that
gcd(e, r) = 1, e may be taken as any prime larger than both p and q. For the
chosen value of e, d can be computed by knowing that d is an integer less than or
equal to r satisfying the congruence ed ≡ 1 (mod r). A few of the possibilities
for e and d are shown in Table 4 (see Appendix B for a BASIC program in for
finding solutions to this congruence).

Table 4.
Some of the values that satisfy ed ≡ 1 (mod r).

e d

101 2669
211 3931
307 1531

31 223

The last choice of e in the table was made by factoring (r+ 1) and choosing
as e one of the prime factors. This procedure will always give a choice for e;
but if (r + 1) is prime, one should choose a different value for e, since either e
or d would be 1.

For the given values of n and r, suppose that the designer decides to use
e = 101 and d = 2669. The public key would be published in a directory for
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this sender in the form (e, n): in this case, (101, 7081). Suppose the message to
be sent is the plaintext POUNDS. The numerical equivalent isM = 161521140419.
Since this number is larger than n, we will break M into blocks of four digits
each. Using e = 101 and n = 7081, we obtain

1615101 ≡ 4226 (mod 7081)
2114101 ≡ 1582 (mod 7081)
0419101 ≡ 765 (mod 7081).

Thus, the ciphertext is C = 4226 1582 0765. The receiver, whose deciphering
key is d = 2669, then deciphers the ciphertext as follows:

42262669 ≡ 1615 (mod 7081)

15822669 ≡ 2114 (mod 7081)

07652669 ≡ 0419 (mod 7081).

Let us consider a second example, again using small values of p and q to
illustrate. Suppose we choose the primes p = 47 and q = 73. Then we have
n = (47)(73) = 3431 and r = (46)(72) = 3312. Since in this case (r + 1) is a
prime, we will select e (and the resulting d) by considering prime numbers that
are larger than both p and q. A few of the possible values of e and d are listed
in Table 5.

Table 5.
Some of the values that satisfy ed ≡ 1 (mod r).

e d

79 2767
181 2269
269 197
353 2993

Suppose that for a particular sender, the public key is (269, 3431). If we
consider the same plaintext as before, that is, POUNDS, for which the numerical
value is M = 161521140419, the sender computes the following:

1615269 ≡ 1379 (mod 3431)

2114269 ≡ 2020 (mod 3431)

419269 ≡ 2167 (mod 3431).

Thus, the ciphertext is C = 1379 2020 2167. To decipher this message, the
receiver uses his value of d = 197 and computes as follows:

1379197 ≡ 1615 (mod 3431)

2020197 ≡ 2114 (mod 3431)

2167197 ≡ 0419 (mod 3431).
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To summarize, using the RSA enciphering system, users can encipher and
decipher messages easily (with the aid of a computer). If the prime numbers
p and q are chosen to be very large (100 digits or more for each), the security
of the system is assured. The integer pairs (e, n) make up the ”public key” of
the system and are put in a public-key directory. The pair (d, n), as well as the
primes p and q, are kept secret, known only to the user. Someone who does not
know d but who wants to find it (e.g., a spy who wants to crack the system)
needs to know p and q. The direct method of attack would be to attempt to
factor n, an integer of huge magnitude (at least 200 digits in length). Once the
factors are determined, the recovery of the deciphering key d can be calculated
from r = (p− 1)(q − 1) and the value of e.

Confidence in the RSA system in based on the expected amount of computer
time needed to factor the product of two large primes. Factoring is computa-
tionally more difficult than distinguishing between primes and composites.
On today’s fastest computers, a 200-digit number can routinely be tested for
primality in less than 10 minutes, whereas the running time required to factor a
composite number of the same size is prohibitive. It has been estimated that the
quickest factoring algorithm known can use approximately 1.2×1023 computer
operations to resolve an integer with 200 digits into its prime factors. Assuming
that each operation takes one microsecond (10−6 seconds), then the factoriza-
tion time would be about 3.8×109 years. Given unlimited computing time and
some unimaginably efficient factoring algorithm, the RSA enciphering system
could be broken; but, for the present, it appears to be quite safe.

7. What’s in Use Today?
Despite the opposition of the U.S. government, many computer companies

have licensed the RSA public-key cryptosystem from its developers. The list
includes Apple, AT&T, Digital, Lotus, Microsoft, Motorola, Northern Telecom,
Novell, Sun, and IBM. Microsoft licensed the technology for use its Windows
NT operating system, and Apple plans to include RSA encryption in its Open
Collaboration Environment operating system. Even U.S. governmental agen-
cies have licensed RSA, including the National Science Foundation, NASA, the
Central Intelligence Agency, the Pentagon, and the State Department. Other
licensees include Chase Manhattan Bank, Chemical Bank, Boeing, Du Pont,
Exxon, Hughes Aircraft, Raytheon, Rockwell International, Texas Instruments,
and Whirlpool [Uehling 1993].
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8. Exercises

1. Encipher the plaintext message using Caesar’s cipher:

WHAT WOULD LIFE BE WITHOUT ARITHMETIC BUT A SCENE OF HORRORS

2. Knowing that a shift transformation was used, decipher the ciphertext:

YUBRO TMKWA GZOUT YOYTU ZYURB OTMVX UHRKS Y

3. Knowing that an affine (linear) transformation was used, decipher the ci-
phertext:

VUVNU GBUOI TGDFT GURVE UORUP OTEVU VNELU VELBG SLPTG ULMTU

TGXVE TPORU VNUGB TPTLB HOUUL ALQQL PPORU VNXLN USGLY RYQT

Use the table of relative frequencies of letters occurring in the English lan-
guage given in Table 6.

Table 6.

Frequency of letters in English text, from Sinkov [1966].

A .073 J .002 S .063

B .009 K .003 T .093

C .030 L .035 U .027

D .044 M .025 V .013

E .130 N .078 W .016

F .028 O .074 X .005

G .016 P .027 Y .019

H .016 Q .003 Z .001

I .035 R .077

4. Use a polygraphic transformation using the enciphering matrix 5 6 10
6 4 7
4 1 2


to encipher the plaintext message GONE WITH THE WIND. Assign numbers to
letters of the alphabet in the usual manner but include the assignment of a
space to the number 27, ? to the number 28, and ! to the number 29.
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5. If the enciphering matrix is  8 1 1
15 2 2
2 0 1

 ,
decipher the ciphertext:

?GPKXRXJPX?LZCXWLHP?FKJQ?VHEIV TH?GPOQX

6. Suppose we select the two primes p = 43 and q = 31.
a) Determine one of the many possible enciphering keys, e and encipher

the plaintext message SCHOOL. (Assign numerical values to alphabetical
letters as in Exercises 4–5.)

b) Determine the corresponding deciphering key, d, for your choice of e in
part (a).

7. The ciphertext C = 08036 10402 02173 10396 06686 13132 is received from
Mary. If you know that p = 97, q = 157, and that your public key is
(881, 15229), decipher her message. (Of course, you must first determine
your own decipher key, d.)

9. Solutions to the Exercises

1. The enciphering formula is c ≡ (p+ 3) (mod 26).

Plaintext: A B C D E F G H I J K L M

Cipher: D E F G H I J K L M N O P

Plaintext: N O P Q R S T U V W X Y Z

Cipher: Q R S T U V W X Y Z A B C

Answer:
ZKDWZ RXOGO LIHEH ZLWKR XWDUL WKPHW LFEXW DVFHQ HRIKR UURUV

2. Since c ≡ (p+ k) (mod 26), we have p ≡ (c− k) (mod 26). One solution is
to consider the first block and try several values of k. Of course, there are
only 25 possibilities for k, so the method may take a considerable amount
of time.

Y U R B O

k = 1 X T Q A N

k = 2 W S P Z M

k = 3 V R O Y L

k = 4 U Q N X K

k = 5 T P M W J

k = 6 S O L V I

The value k = 6 seems to make sense, so try p ≡ (c− 6) (mod 26).
Answer: SOLVING EQUATIONS IS NOT SOLVING PROBLEMS
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3. First, count the frequency of occurrence of each letter in the ciphertext:
Letter: U T L V G O P N R E B

Frequency: 16 10 10 9 8 6 6 5 5 5 4

Letter: Q S Y X I F H A D M

Frequency: 3 2 2 2 1 1 1 1 1 1

We need to determine a and b for c ≡ (ap + b) (mod 26); and if we let U
correspond to E and T correspond to T, the congruences that must be solved are

21 ≡ 5a+ b (mod 26)
20 ≡ 20a+ b (mod 26).

Subtracting, we obtain 1 ≡ −15a ≡ 11a (mod 26). Since the inverse of 11 is
19 (mod 26), we have

19(11a) ≡ a ≡ 19(1) ≡ 19 (mod 26).

Substituting this value of a into the first congruence, we get

b ≡ 21− 5(19) ≡ 4 (mod 26).

Thus, c ≡ (19p + 4) (mod 26), or 19p ≡ (c − 4) (mod 26). Multiplying by
the inverse of 19 yields the formula

11(19p) ≡ 11(c− 4) (mod 26),

or p ≡ 11(c− 4). Using this formula and the first block of the ciphertext, we
obtain

V : p ≡ 11(22− 4) ≡ 11(18) ≡ 16 =⇒ P

U : p ≡ 11(21− 4) ≡ 11(17) ≡ 5 =⇒ E

V : p ≡ 11(22− 4) ≡ 11(18) ≡ 16 =⇒ P

N : p ≡ 11(14− 4) ≡ 11(10) ≡ 6 =⇒ F

U : p ≡ 11(21− 4) ≡ 11(17) ≡ 5 =⇒ E

This correspondence doesn’t seem to make sense, so we will try another
correspondence taking into consideration the frequencies. Suppose we try
T corresponding to E and U corresponding to T. Then the appropriate con-
gruences are

20 ≡ 5a+ b (mod 26)
21 ≡ 20a+ b (mod 26).

Again subtracting, we obtain −1 ≡ 25 ≡ −15a ≡ 11a (mod 26).

19(11a) ≡ a ≡ 19(25) ≡ 7 (mod 26).

Substituting in the first congruence,

b ≡ 20− 5(7) ≡ 11 (mod 26).
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Thus, the formula will be c ≡ 7p+ 11, or

7p ≡ c− 11 (mod 26).

Now the inverse of 7 (mod 26) is 15, so

15(7p) ≡ p ≡ 15(c− 11) (mod 26).

Trying this formula on the first block results in

V : p ≡ 15(22− 11) ≡ 9 =⇒ I

U : p ≡ 15(21− 11) ≡ 20 =⇒ T

V : p ≡ 15(22− 11) ≡ 9 =⇒ I

N : p ≡ 15(14− 11) ≡ 19 =⇒ S

U : p ≡ 15(21− 11) ≡ 20 =⇒ T

This formula seems to be making some sense, so continue deciphering other
blocks.
Answer:
IT IS TRUTH VERY CERTAIN THAT WHEN IT IS NOT IN OUR POWER TO

DETERMINE WHAT IS TRUE WE OUGHT TO FOLLOW WHAT IS PROBABLE

4. Assigning numbers to the letters of the plaintext, we obtain

G O N E W I T H T H E W I N D

07 15 14 05 27 23 09 20 08 27 20 08 05 27 23 09 14 04 5 6 10
6 4 7
4 1 2

 ·
 7 5 9 5 9

15 27 20 27 14
14 23 8 23 4

 =

 265 417 245 417 169
200 299 190 299 138
71 93 72 93 58


≡
 4 11 13 11 24

26 9 16 9 22
13 6 14 6 29

 (mod 29).

Answer: DZMKIFMPNPH?KIFXV!

5. First, find the inverse of the encoding matrix. Using the Gauss-Jordan
elimination method, 8 1 1 1 0 0

15 2 2 0 1 0
2 0 1 0 0 1

 ∼
 1 0.125 0.125 0.125 0 0

15 2 2 0 1 0
2 0 1 0 0 1


∼

 1 0.125 0.125 0.125 0 0
0 1 1 −15 8 0
0 −0.250 0.750 −0.250 0 1


∼

 1 0 0 2 −1 0
0 1 1 −15 8 0
0 0 1 −4 2 1





Elementary Cryptology 21

∼
 1 0 0 2 −1 0

0 1 0 −11 6 −1
0 0 1 −4 2 1

 .
Thus, the inverse of the encoding matrix is 2 −1 0

−11 6 −1
−4 2 1

 .
We translate the message:

2
4

2 −1 0
−11 6 −1
−4 2 1

3
5 ·

2
4

28 11 24 24 26 23 16 11 28 5 27 28 15
7 24 10 28 3 12 28 10 22 9 20 7 17

16 18 16 12 24 8 6 17 8 22 8 16 24

3
5 ≡

2
4

49 −2 38 20 49 34 4 12 34 1 34 49 13
−282 5 −220 −108 −292 −189 −14 −78 −184 −23 −185 −282 −87
−82 22 −60 −28 −74 −60 −2 −7 −60 20 −60 −82 −2

3
5

≡
2
4

20 27 9 20 20 5 4 12 5 1 5 20 13
8 5 12 8 27 14 15 9 19 6 18 8 29
5 22 27 1 13 27 27 22 27 20 27 5 27

3
5 (mod 29)

Answer: THE EVIL THAT MEN DO LIVES AFTER THEM!

6. a) For p = 43, q = 31, n = pq = 1333, we have r = (p − 1)(q − 1) =
(42)(30) = 1260, so (r + 1) = 1261 = (13)(97). Therefore, e can be taken
to be 13, 97, or any prime number greater than both p and q. Thus, a few
possible values of e are 13, 47, 53, 59, 61, etc. Suppose we take e = 13.

S C H O O L

19 03 08 15 15 12

The plaintext message is thereforeP = 190 308 151 512. (Remember that
each block must have a value less than n.)

19013 ≡ 932 (mod 1333)

30813 ≡ 953 (mod 1333)

15113 ≡ 432 (mod 1333)

51213 ≡ 376 (mod 1333).

(See Appendix A for a computer program to do modular reduction.)
Answer: C = 932 953 432 376.

b) To find a suitable value of d, we must solve 13d ≡ 1 (mod 1260). One
way is to use a suitable computer program (see Appendix B). Another
is to use the Euclidean algorithm, which gives gcd(13, 1260):

1260 = 13(96) + 12
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13 = 12(1) + 1.

Thus, 1 = 13− (1)(12) = 13− [1260− 13(96)], or 1 = 13(97)− 1260, that
is, 13(97) ≡ 1 (mod 1260). A suitable value of d then is 97.

Had we chosen e = 47, then to find d we would need to solve 47d ≡
1 (mod 1260). Using the Euclidean algorithm, we have

1260 = 47(26) + 38

47 = 38(1) + 9

38 = 9(4) + 2

9 = 2(4) + 1.

Thus,

1 = 9− 4(2) = 9− 4[38− 9(4)]

1 = 17(9)− 4(38) = 17[47− 38]− 4(38)

1 = 17(47)− 21(38) = 17(47)− 21[1260− 47(26)]

1 = 47(563)− 21(1260),

that is, 47(563) ≡ 1 (mod 1260). A suitable value of d corresponding to
e = 47 is 563.

7. For p = 97, q = 157, and n = pq = 15229, we have r = (96)(156) =
14976. Now, e is given to be 881; thus, to find the value of d, we must
solve 881d ≡ 1 (mod 14976). Using either the computer program or the
Euclidean algorithm, we obtain d = 17:

14976 = 881(16) + 880

881 = 880(1) + 1, thus
1 = 881− 880 = 881− [14976− 881(16)]

1 = 881(17)− 14976,

that is, 881(17) ≡ 1 (mod 14976) and d can be 17.

0803617 ≡ 1301 (mod 15229)

1040217 ≡ 2008 (mod 15229)

0217317 ≡ 2709 (mod 15229)

1039617 ≡ 1927 (mod 15229)

0668617 ≡ 0621 (mod 15229)

1313217 ≡ 1429 (mod 15229).

Therefore, the plaintext value is P = 130120082709192706211429, or using
the alphabet assignments, we arrive at:
Answer: MATH IS FUN!
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10. Appendix A: BASIC Program
for Modular Reduction

100 HOME

110 PRINT "FIND THE RESIDUE OF X^A (MOD M)"

120 PRINT

130 DIM K(500)

140 INPUT "A = "; A

150 LET A1 = A

160 LET I = 0

170 LET C = INT (A/2)

180 LET B = A - C*2

190 IF B = 1 THEN K(I) = 1: GOTO 210

200 LET K(I) = 0

210 LET I = I + 1

220 LET A = C

230 IF A = 1 THEN K(I) = 1: GOTO 250

240 GOTO 170

250 INPUT "M = "; M

260 INPUT "X = (ENTER 0 TO END)"; X

265 IF X = O THEN END

270 LET Z = 1

280 LET Y = X

290 FOR J = 1 TO I

300 LET Y = Y*Y

310 LET Y = Y - M * INT(Y/M)

320 IF K(J) = 1 THEN Z = Z*Y

330 LET Z = Z - M * INT(Z/M)

340 NEXT J

350 IF K(0) = 1 THEN Z = X*Z

360 LET Z = Z - M * INT(Z/M)

365 PRINT

370 PRINT X;"^";A1;" IS CONGRUENT TO ";Z;" (MOD ";M:")"

380 PRINT : GOTO 260

390 END
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11. Appendix B: BASIC Program
to Solve ed ≡ 1

100 HOME

110 PRINT "FOR THE RSA PUBLIC-KEY CRYPTOGRAPHY"

120 PRINT "SYSTEM, THIS PROGRAM FINDS THE DECIPHERING"

130 PRINT "EXPONENT D, GIVEN PRIMES P AND Q AND"

140 PRINT "THE ENCIPHERING EXPONENT E. MORE GENERALLY,"

150 PRINT "THFOR A=(P-1)(Q-1) AND B = E, THE PROGRAM"

160 PRINT "IMPLEMENTS THE ALGORITHM FOR FINDING"

170 PRINT "G = GCD (A,B) AND SOLVING AX + BY = G."

180 PRINT "IF G = 1, THEN Y IS THE DECIPHERING"

190 PRINT "EXPONENT D."

200 REM

210 REM INITIALIZES SEQUENCES

220 REM

230 LET A0 = 1

240 LET A1 = 0

250 LET B0 = 0

260 LET B1 = 1

270 PRINT

280 REM ENTER P, Q, AND E AND SET UP A AND B

290 REM

300 INPUT "ENTER PRIMES P AND Q ";P,Q

310 INPUT "ENTER ENCRYPT EXPONENT E ";E

320 LET A = (P - 1) * (Q - 1)

330 LET B = E

340 REM

350 REM EUCLIDEAN ALGORITHM TO FIND GCD (A,B)

360 REM

370 LET M1 = A

380 LET N1 = B

390 LET T = M1

400 LET M1 = N1

410 LET Q = INT (T / N1)

420 LET N1 = T - N1 * Q

430 REM

440 REM WHEN N1 = 0, END EUCLIDEAN ALGORITHM WITH M1 = GCD (A,B)

450 REM

460 IF N1 = 0 THEN 610

470 REM

480 REM COMPUTATION OF SEQUENCES

490 REM

500 LET A2 = A0 - A1 * Q
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510 LET B2 = B0 - B1 * Q

520 LET A0 = A1

530 LET B0 = B1

540 LET A1 = A2

550 LET B1 = B2

560 GOTO 390

570 REM

580 REM TO ENSURE POSITIVE SOLUTION X = A2 AND Y = B2

590 REM TO A*X = G MOD B AND TO B*Y = G MOD A

600 REM

610 IF B2 < 0 THEN B2 = A / M1 + B2

620 IF A2 < 0 THEN A2 = B / M1 + A2

630 REM

640 REM PRINT RESULTS

650 REM

660 IF M1 <> 1 THEN PRINT "GCD <> 1" : GOTO 680

670 PRINT "DECRYPT EXPONENT IS ";B2

680 END
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